Copied to
clipboard

G = C2×C323F5order 360 = 23·32·5

Direct product of C2 and C323F5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C323F5, C301Dic3, C6⋊(C3⋊F5), (C3×C6)⋊3F5, (C3×C30)⋊2C4, C328(C2×F5), D5⋊(C3⋊Dic3), D10.(C3⋊S3), C10⋊(C3⋊Dic3), (C6×D5).7S3, (C3×D5).8D6, (C3×D5)⋊2Dic3, C152(C2×Dic3), (C32×D5)⋊5C4, (C32×D5).5C22, C5⋊(C2×C3⋊Dic3), C32(C2×C3⋊F5), (C3×C15)⋊8(C2×C4), (D5×C3×C6).3C2, D5.2(C2×C3⋊S3), SmallGroup(360,147)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C2×C323F5
C1C5C15C3×C15C32×D5C323F5 — C2×C323F5
C3×C15 — C2×C323F5
C1C2

Generators and relations for C2×C323F5
 G = < a,b,c,d,e | a2=b3=c3=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 528 in 96 conjugacy classes, 45 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C6, C2×C4, C32, D5, C10, Dic3, C2×C6, C15, C3×C6, C3×C6, F5, D10, C2×Dic3, C3×D5, C30, C3⋊Dic3, C62, C2×F5, C3×C15, C3⋊F5, C6×D5, C2×C3⋊Dic3, C32×D5, C3×C30, C2×C3⋊F5, C323F5, D5×C3×C6, C2×C323F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C3⋊S3, F5, C2×Dic3, C3⋊Dic3, C2×C3⋊S3, C2×F5, C3⋊F5, C2×C3⋊Dic3, C2×C3⋊F5, C323F5, C2×C323F5

Smallest permutation representation of C2×C323F5
On 90 points
Generators in S90
(1 49)(2 50)(3 46)(4 47)(5 48)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)(46 76 61)(47 77 62)(48 78 63)(49 79 64)(50 80 65)(51 81 66)(52 82 67)(53 83 68)(54 84 69)(55 85 70)(56 86 71)(57 87 72)(58 88 73)(59 89 74)(60 90 75)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)
(2 3 5 4)(6 13 7 15)(8 12 10 11)(9 14)(16 33 17 35)(18 32 20 31)(19 34)(21 43 22 45)(23 42 25 41)(24 44)(26 38 27 40)(28 37 30 36)(29 39)(46 48 47 50)(51 58 52 60)(53 57 55 56)(54 59)(61 78 62 80)(63 77 65 76)(64 79)(66 88 67 90)(68 87 70 86)(69 89)(71 83 72 85)(73 82 75 81)(74 84)

G:=sub<Sym(90)| (1,49)(2,50)(3,46)(4,47)(5,48)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,33,17,35)(18,32,20,31)(19,34)(21,43,22,45)(23,42,25,41)(24,44)(26,38,27,40)(28,37,30,36)(29,39)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,78,62,80)(63,77,65,76)(64,79)(66,88,67,90)(68,87,70,86)(69,89)(71,83,72,85)(73,82,75,81)(74,84)>;

G:=Group( (1,49)(2,50)(3,46)(4,47)(5,48)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,33,17,35)(18,32,20,31)(19,34)(21,43,22,45)(23,42,25,41)(24,44)(26,38,27,40)(28,37,30,36)(29,39)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,78,62,80)(63,77,65,76)(64,79)(66,88,67,90)(68,87,70,86)(69,89)(71,83,72,85)(73,82,75,81)(74,84) );

G=PermutationGroup([[(1,49),(2,50),(3,46),(4,47),(5,48),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90)], [(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30),(46,76,61),(47,77,62),(48,78,63),(49,79,64),(50,80,65),(51,81,66),(52,82,67),(53,83,68),(54,84,69),(55,85,70),(56,86,71),(57,87,72),(58,88,73),(59,89,74),(60,90,75)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90)], [(2,3,5,4),(6,13,7,15),(8,12,10,11),(9,14),(16,33,17,35),(18,32,20,31),(19,34),(21,43,22,45),(23,42,25,41),(24,44),(26,38,27,40),(28,37,30,36),(29,39),(46,48,47,50),(51,58,52,60),(53,57,55,56),(54,59),(61,78,62,80),(63,77,65,76),(64,79),(66,88,67,90),(68,87,70,86),(69,89),(71,83,72,85),(73,82,75,81),(74,84)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D 5 6A6B6C6D6E···6L 10 15A···15H30A···30H
order122233334444566666···61015···1530···30
size11552222454545454222210···1044···44···4

42 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4S3Dic3D6Dic3F5C2×F5C3⋊F5C2×C3⋊F5
kernelC2×C323F5C323F5D5×C3×C6C32×D5C3×C30C6×D5C3×D5C3×D5C30C3×C6C32C6C3
# reps1212244441188

Matrix representation of C2×C323F5 in GL8(𝔽61)

600000000
060000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
000600000
001600000
00001000
00000100
00000010
00000001
,
601000000
600000000
006010000
006000000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
000060100
000060010
000060001
000060000
,
011000000
110000000
005000000
0050110000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(61))| [60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,50,50,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

C2×C323F5 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_3F_5
% in TeX

G:=Group("C2xC3^2:3F5");
// GroupNames label

G:=SmallGroup(360,147);
// by ID

G=gap.SmallGroup(360,147);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,387,1444,7781,2609]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽